csPipeline
Short Description
The csPipeline function is simply a wrapper for the following functions:
- csPredict
- generateCSScore
- csObject
- cspot
Typically, in production settings, csPipeline
would be utilized, whereas
step-by-step analysis would be employed for troubleshooting, model validation,
and similar tasks that necessitate greater granularity or control.
Please refer to the individual function documentation for parameter tuning.
Function¶
csPipeline(**kwargs)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
imagePath |
str
|
The path to the .tif file that needs to be processed. |
required |
csModelPath |
str
|
The path to the |
required |
markerChannelMapPath |
str
|
The path to the marker panel list, which contains information about the markers used in the image. This argument is required. |
required |
segmentationMaskPath |
str
|
Supply the path of the pre-computed segmentation mask. |
required |
spatialTablePath |
list
|
Provide a list of paths to the single-cell spatial feature tables, ensuring each image has a unique path specified. |
required |
projectDir |
str
|
The path to the output directory where the processed images ( |
required |
verbose |
bool
|
If True, print detailed information about the process to the console. |
required |
markerColumnName |
str
|
The name of the column in the marker panel list that contains the marker names. The default value is 'marker'. |
required |
channelColumnName |
str
|
The name of the column in the marker panel list that contains the channel names. The default value is 'channel'. |
required |
modelColumnName |
str
|
The name of the column in the marker panel list that contains the model names. The default value is 'cspotmodel'. |
required |
GPU |
int
|
An optional argument to explicitly select the GPU to use. The default value is -1, meaning that the GPU will be selected automatically. |
required |
feature |
str
|
Calculates the |
required |
markerNames |
list
|
The program searches for marker names in the meta data (description section)
of the tiff files created by |
required |
CellId |
str
|
Specify the column name that holds the cell ID (a unique name given to each cell). |
required |
uniqueCellId |
bool
|
The function generates a unique name for each cell by combining the CellId and imageid. If you don't want this, pass False. In such case the function will default to using just the CellId. However, make sure CellId is unique especially when loading multiple images together. |
required |
split |
string
|
The spatial feature table generally includes single cell expression data and meta data such as X, Y coordinates, and cell shape size. The CSPOT object separates them. Ensure that the expression data columns come first, followed by meta data columns. Provide the column name that marks the split, i.e the column name immediately following the expression data. |
required |
removeDNA |
bool
|
Exclude DNA channels from the final output. The function searches for
column names containing the string |
required |
remove_string_from_name |
string
|
Cleans up channel names by removing user specified string from all marker names. |
required |
csScore |
str
|
Include the label used for saving the |
required |
minAbundance |
float
|
Specify the minimum percentage of cells that should express a specific marker in order to determine if the marker is considered a failure. A good approach is to consider the lowest percentage of rare cells expected within the dataset. |
required |
percentiles |
list
|
Specify the interval of percentile levels of the expression utilized to intialize the GMM. The cells falling within these percentiles are utilized to distinguish between negative cells (first two values) and positive cells (last two values). |
required |
dropMarkers |
list
|
Specify a list of markers to be removed from the analysis, for
example: |
required |
RobustScale |
bool
|
When set to True, the data will be subject to Robust Scaling before the Gradient Boosting Classifier is trained. |
required |
log |
bool
|
Apply |
required |
stringentThreshold |
bool
|
The Gaussian Mixture Model (GMM) is utilized to distinguish positive and negative cells by utilizing csScores. The stringentThreshold can be utilized to further refine the classification of positive and negative cells. By setting it to True, cells with csScore below the mean of the negative distribution and above the mean of the positive distribution will be labeled as true negative and positive, respectively. |
required |
x_coordinate |
str
|
The column name in |
required |
y_coordinate |
str
|
The column name in |
required |
imageid |
str
|
The name of the column that holds the unique image ID. |
required |
random_state |
int
|
Seed used by the random number generator. |
required |
rescaleMethod |
string
|
Choose between |
required |
label |
str
|
Assign a label for the object within |
required |
Returns:
Name | Type | Description |
---|---|---|
csObject |
anndata
|
Returns a csObject with predictions of all positve and negative cells. |
Example
# Path to all the files that are necessary files for running the
CSPOT Prediction Algorithm (broken down based on sub functions)
projectDir = '/Users/aj/Documents/cspotExampleData'
# gatorPredict related paths
imagePath = projectDir + '/image/exampleImage.tif'
markerChannelMapPath = projectDir + '/markers.csv'
csModelPath = projectDir + '/manuscriptModels/'
# Generate generateGatorScore related paths
segmentationPath = projectDir + '/segmentation/exampleSegmentationMask.tif'
# gatorObject related paths
spatialTablePath = projectDir + '/quantification/exampleSpatialTable.csv'
# Run the pipeline
cs.csPipeline(
# parameters for gatorPredict function
imagePath=imagePath,
csModelPath=csModelPath,
markerChannelMapPath=markerChannelMapPath,
# parameters for generateGatorScore function
segmentationMaskPath=segmentationPath,
# parameters for gatorObject function
spatialTablePath=spatialTablePath,
# parameters to run gator function
# ..
# common parameters
verbose=False,
projectDir=projectDir)
# Same function if the user wants to run it via Command Line Interface
python csPipeline.py --imagePath /Users/aj/Documents/cspotExampleData/image/exampleImage.tif --csModelPath /Users/aj/Documents/cspotExampleData/CSPOT/cspotModel/ --markerChannelMapPath /Users/aj/Documents/cspotExampleData/markers.csv --segmentationMaskPath /Users/aj/Documents/cspotExampleData/segmentation/exampleSegmentationMask.tif --spatialTablePath /Users/aj/Documents/cspotExampleData/quantification/exampleSpatialTable.csv --projectDir /Users/aj/Documents/cspotExampleData
Source code in cspot/csPipeline.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|