Skip to content

cspot

Short Description

The cspot function identifies positive and negative cells for a marker. To get optimal results, consider adjusting the following parameters:

  1. The csObject parameter can accept either the loaded csObject or a path to the .h5ad file.
  2. The minAbundance parameter determines the minimum percentage of a marker's abundance to consider it a failure.
  3. It is suggested to drop background markers with the dropMarkers option as they can interfere with classifiers.
  4. RobustScale: Scaling the data before training the classifier model has been shown to improve results. However, in our experience a simple log transformation was found to be sufficient.
Function

cspot(csObject, csScore='csScore', minAbundance=0.005, percentiles=[1, 20, 80, 99], dropMarkers=None, RobustScale=False, log=True, stringentThreshold=False, x_coordinate='X_centroid', y_coordinate='Y_centroid', imageid='imageid', random_state=0, rescaleMethod='minmax', label='cspotOutput', verbose=True, projectDir=None, **kwargs)

Parameters:

Name Type Description Default
csObject anndata

Pass the csObject loaded into memory or a path to the csObject file (.h5ad).

required
csScore str

Include the label used for saving the csScore within the CSPOT object.

'csScore'
minAbundance float

Specify the minimum percentage of cells that should express a specific marker in order to determine if the marker is considered a failure. A good approach is to consider the lowest percentage of rare cells expected within the dataset.

0.005
percentiles list

Specify the interval of percentile levels of the expression utilized to intialize the GMM. The cells falling within these percentiles are utilized to distinguish between negative cells (first two values) and positive cells (last two values).

[1, 20, 80, 99]
dropMarkers list

Specify a list of markers to be removed from the analysis, for example: ["background_channel1", "background_channel2"].

None
RobustScale bool

When set to True, the data will be subject to Robust Scaling before the Gradient Boosting Classifier is trained.

False
log bool

Apply log1p transformation on the data, unless it has already been log transformed in which case set it to False.

True
stringentThreshold bool

The Gaussian Mixture Model (GMM) is utilized to distinguish positive and negative cells by utilizing csScores. The stringentThreshold can be utilized to further refine the classification of positive and negative cells. By setting it to True, cells with csScore below the mean of the negative distribution and above the mean of the positive distribution will be labeled as true negative and positive, respectively.

False
x_coordinate str

The column name in single-cell spatial table that records the X coordinates for each cell.

'X_centroid'
y_coordinate str

The column name in single-cell spatial table that records the Y coordinates for each cell.

'Y_centroid'
imageid str

The name of the column that holds the unique image ID.

'imageid'
random_state int

Seed used by the random number generator.

0
rescaleMethod string

Choose between sigmoid and minmax.

'minmax'
label str

Assign a label for the object within adata.uns where the predictions from CSPOT will be stored.

'cspotOutput'
verbose bool

If True, print detailed information about the process to the console.

True
projectDir str

Provide the path to the output directory. The result will be located at projectDir/CSPOT/cspotOutput/.

None
**kwargs keyword parameters

Additional arguments to pass to the HistGradientBoostingClassifier() function.

{}

Returns:

Name Type Description
csObject anndata

If projectDir is provided the updated CSPOT Object will saved within the provided projectDir.

Example
# set the working directory & set paths to the example data
projectDir = '/Users/aj/Documents/cspotExampleData'
csObject = projectDir + '/CSPOT/csObject/exampleImage_cspotPredict.ome.h5ad'

# Run the function
adata = cs.cspot ( csObject=csObject,
            csScore='csScore',
            minAbundance=0.005,
            percentiles=[1, 20, 80, 99],
            dropMarkers = None,
            RobustScale=False,
            log=True,
            x_coordinate='X_centroid',
            y_coordinate='Y_centroid',
            imageid='imageid',
            random_state=0,
            rescaleMethod='sigmoid',
            label='cspotOutput',
            verbose=False,
           projectDir=projectDir)


# Same function if the user wants to run it via Command Line Interface
python cspot.py             --csObject /Users/aj/Documents/cspotExampleData/CSPOT/csObject/exampleImage_cspotPredict.ome.h5ad             --projectDir /Users/aj/Documents/cspotExampleData
Source code in cspot/cspot.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
def cspot (csObject,
           csScore='csScore',
           minAbundance=0.005,
           percentiles=[1, 20, 80, 99],
           dropMarkers = None,
           RobustScale=False,
           log=True,
           stringentThreshold=False,
           x_coordinate='X_centroid',
           y_coordinate='Y_centroid',
           imageid='imageid',
           random_state=0,
           rescaleMethod='minmax',
           label='cspotOutput',
           verbose=True,
           projectDir=None, **kwargs):
    """
Parameters:
    csObject (anndata):
        Pass the `csObject` loaded into memory or a path to the `csObject` 
        file (.h5ad).

    csScore (str, optional):
        Include the label used for saving the `csScore` within the CSPOT object.

    minAbundance (float, optional):
        Specify the minimum percentage of cells that should express a specific
        marker in order to determine if the marker is considered a failure.
        A good approach is to consider the lowest percentage of rare cells
        expected within the dataset.

    percentiles (list, optional):
        Specify the interval of percentile levels of the expression utilized to intialize
        the GMM. The cells falling within these percentiles are utilized to distinguish
        between negative cells (first two values) and positive cells (last two values).

    dropMarkers (list, optional):
        Specify a list of markers to be removed from the analysis, for
        example: `["background_channel1", "background_channel2"]`. 

    RobustScale (bool, optional):
        When set to True, the data will be subject to Robust Scaling before the
        Gradient Boosting Classifier is trained. 

    log (bool, optional):
        Apply `log1p` transformation on the data, unless it has already been log
        transformed in which case set it to `False`. 

    stringentThreshold (bool, optional):
        The Gaussian Mixture Model (GMM) is utilized to distinguish positive and 
        negative cells by utilizing csScores. The stringentThreshold can be utilized 
        to further refine the classification of positive and negative cells. 
        By setting it to True, cells with csScore below the mean of the negative 
        distribution and above the mean of the positive distribution will be 
        labeled as true negative and positive, respectively.

    x_coordinate (str, optional):
        The column name in `single-cell spatial table` that records the
        X coordinates for each cell. 

    y_coordinate (str, optional):
        The column name in `single-cell spatial table` that records the
        Y coordinates for each cell.

    imageid (str, optional):
        The name of the column that holds the unique image ID. 

    random_state (int, optional):
        Seed used by the random number generator. 

    rescaleMethod (string, optional):
        Choose between `sigmoid` and `minmax`.

    label (str, optional):
        Assign a label for the object within `adata.uns` where the predictions
        from CSPOT will be stored. 

    verbose (bool, optional):
        If True, print detailed information about the process to the console.  

    projectDir (str, optional):
        Provide the path to the output directory. The result will be located at
        `projectDir/CSPOT/cspotOutput/`. 

    **kwargs (keyword parameters):
        Additional arguments to pass to the `HistGradientBoostingClassifier()` function.

Returns:
    csObject (anndata):
        If projectDir is provided the updated CSPOT Object will saved within the
        provided projectDir.

Example:
        ```python

        # set the working directory & set paths to the example data
        projectDir = '/Users/aj/Documents/cspotExampleData'
        csObject = projectDir + '/CSPOT/csObject/exampleImage_cspotPredict.ome.h5ad'

        # Run the function
        adata = cs.cspot ( csObject=csObject,
                    csScore='csScore',
                    minAbundance=0.005,
                    percentiles=[1, 20, 80, 99],
                    dropMarkers = None,
                    RobustScale=False,
                    log=True,
                    x_coordinate='X_centroid',
                    y_coordinate='Y_centroid',
                    imageid='imageid',
                    random_state=0,
                    rescaleMethod='sigmoid',
                    label='cspotOutput',
                    verbose=False,
                   projectDir=projectDir)


        # Same function if the user wants to run it via Command Line Interface
        python cspot.py \
            --csObject /Users/aj/Documents/cspotExampleData/CSPOT/csObject/exampleImage_cspotPredict.ome.h5ad \
            --projectDir /Users/aj/Documents/cspotExampleData


        ```

    """

    # testing
    #csObject= '/Users/aj/Dropbox (Partners HealthCare)/nirmal lab/resources/exemplarData/cspotExampleData/CSPOT/csObject/exampleImage_cspotPredict.ome.h5ad'
    #csScore='csScore'; minAbundance=0.005; percentiles=[1, 20, 80, 99]; dropMarkers = None
    #RobustScale=False; log=True; stringentThreshold=False; x_coordinate='X_centroid'; y_coordinate='Y_centroid'
    #imageid='imageid'; random_state=0; rescaleMethod='minmax'; label='cspotOutput'; verbose=True; projectDir=None

    # Load the andata object
    if isinstance(csObject, str):
        adata = ad.read(csObject)
        csObject = [csObject]
        csObjectPath = [pathlib.Path(p) for p in csObject]
    else:
        adata = csObject.copy()

    # break the function if csScore is not detectable
    def check_key_exists(dictionary, key):
        try:
            # Check if the key exists in the dictionary
            value = dictionary[key]
        except KeyError:
            # Return an error if the key does not exist
            return "Error: " + str(csScore) + " does not exist, please check!"
    # Test
    check_key_exists(dictionary=adata.uns, key=csScore)


    ###########################################################################
    # SOME GENERIC FUNCTIONS
    ###########################################################################

    # used in (step 1)
    def get_columns_with_low_values(df, minAbundance):
        columns_to_keep = []
        for column in df.columns:
            num_rows_with_high_values = len(df[df[column] > 0.6])
            if num_rows_with_high_values / len(df) < minAbundance:
                columns_to_keep.append(column)
        return columns_to_keep

    # count the number of pos and neg elements in a list
    def count_pos_neg(lst):
        arr = np.array(lst)
        result = {'pos': np.sum(arr == 'pos'), 'neg': np.sum(arr == 'neg')}
        result['pos'] = result['pos'] if result['pos'] > 0 else 0
        result['neg'] = result['neg'] if result['neg'] > 0 else 0
        return result

    # alternative to find if markers failed
    def simpleGMM_failedMarkers (df, n_components, minAbundance, random_state):
        # prepare data
        columns_to_keep = []
        for column in df.columns:
            #print(str(column))
            colValue = df[[column]].values  
            colValue[0] = 0; colValue[1] = 1;   # force the model to converge from 0-1
            gmm = GaussianMixture(n_components=n_components,  random_state=random_state)
            gmm.fit(colValue)
            predictions = gmm.predict(colValue)
            # Get the mean of each Gaussian component
            means = gmm.means_.flatten()
            # Sort the mean values in ascending order
            sorted_means = np.sort(means)
            # Assign 'pos' to rows with higher mean distribution and 'neg' to rows with lower mean distribution
            labels = np.where(predictions == np.argmax(means), 'pos', 'neg')
            # count pos and neg
            counts = count_pos_neg(labels)
            # find if the postive cells is less than the user defined min abundance
            if counts['pos'] / len(df)  < minAbundance:
                columns_to_keep.append(column)
        return columns_to_keep


    # preprocess data (step-4)
    def pre_process (data, log=log):
        # clip outliers
        def clipping (x):
            clip = x.clip(lower =np.percentile(x,0.01), upper=np.percentile(x,99.99)).tolist()
            return clip
        processsed_data = data.apply(clipping)
        if log is True:
            processsed_data = np.log1p(processsed_data)
        return processsed_data
    # preprocess data (step-5)
    def apply_transformation (data):
        # rescale the data
        transformer = RobustScaler().fit(data)
        processsed_data = pd.DataFrame(transformer.transform(data), columns = data.columns, index=data.index)
        return processsed_data

    # GMM
    def simpleGMM (data, n_components, means_init, random_state):
        gmm = GaussianMixture(n_components=n_components, means_init=means_init,  random_state=random_state)
        gmm.fit(data)
        # Predict the class labels for each sample
        predictions = gmm.predict(data)
        # Get the mean of each Gaussian component
        means = gmm.means_.flatten()
        # Sort the mean values in ascending order
        sorted_means = np.sort(means)
        # Assign 'pos' to rows with higher mean distribution and 'neg' to rows with lower mean distribution
        labels = np.where(predictions == np.argmax(means), 'pos', 'neg')

        return labels, sorted_means 

    # take in two list (ccategorical and numerical) and return mean values
    def array_mean (labels, values):
        # Create a defaultdict with an empty list as the default value
        result = defaultdict(list)
        # Iterate over the labels and values arrays
        for label, value in zip(labels, values):
            # Add the value to the list for the corresponding label
            result[label].append(value)
        # Calculate the mean for each label and store it in the dictionary
        for label, value_list in result.items():
            result[label] = np.mean(value_list)
        return result

    # match two arrays and return seperate lists
    def array_match (labels, names):
        # Create a defaultdict with an empty list as the default value
        result = defaultdict(list)
        # Iterate over the labels and names arrays
        for label, name in zip(labels, names):
            # Add the name to the list for the corresponding label
            result[label].append(name)
        return result

    # return the mean between two percentiles
    def meanPercentile (values, lowPercentile, highPercentile):
        # Calculate the 1st percentile value
        p1 = np.percentile(values, lowPercentile)
        # Calculate the 20th percentile value
        p20 = np.percentile(values, highPercentile)
        # Select the values between the 1st and 20th percentile using numpy.where()
        filtered_values = np.where((values >= p1) & (values <= p20))
        # Calculate the mean of the filtered values
        meanVal = np.mean(values[filtered_values])
        return meanVal

    # return the mean between two percentiles
    def indexPercentile (processed_data, marker, lowPercentile, highPercentile):
        values = processed_data[marker].values
        # Calculate the 1st percentile value
        p1 = np.percentile(values, lowPercentile)
        # Calculate the 20th percentile value
        p20 = np.percentile(values, highPercentile)
        # Select the values between the 1st and 20th percentile using numpy.where()
        filtered_values = np.where((values >= p1) & (values <= p20))
        # Calculate the mean of the filtered values
        idx = processed_data[marker].iloc[filtered_values].index
        return idx

    # Used for rescaling data
    # used to find the mid point of GMM mixtures
    def find_midpoint(data, labels):
      # Convert data and labels to NumPy arrays
      data = np.array(data)
      labels = np.array(labels)
      # Get the indices that would sort the data and labels arrays
      sort_indices = np.argsort(data)
      # Sort the data and labels arrays using the sort indices
      sorted_data = data[sort_indices]
      sorted_labels = labels[sort_indices]
      # Find the index where the 'neg' and 'pos' labels meet
      midpoint_index = np.argmax(sorted_labels == 'pos')
      # Return the value at the midpoint index
      return sorted_data[midpoint_index]

    # Used for reassigning some of the wrong 'nes' and 'pos' within data given a midpoint
    def modify_negatives_vectorized(data, labels, midpoint):
      # Convert data and labels to NumPy arrays
      data = np.array(data)
      labels = np.array(labels)
      # Calculating the mean of 'neg' instances  (used to replace wrongly assigned pos instances)
      neg_mean = np.mean(data[labels == 'neg'])
      # Get the indices that would sort the data and labels arrays
      sort_indices = np.argsort(data)
      # Sort the data and labels arrays using the sort indices
      sorted_data = data[sort_indices]
      sorted_labels = labels[sort_indices]
      # Find the index where the sorted data is greater than or equal to the midpoint value
      midpoint_index = np.argmax(sorted_data >= midpoint)
      # Find all the elements in the sorted labels array with a value of 'neg' after the midpoint index
      neg_mask = np.logical_and(sorted_labels == 'neg', np.arange(len(sorted_data)) >= midpoint_index)
      # Modify the value of the elements to be equal to the midpoint value
      sorted_data[neg_mask] = neg_mean
      # Find all the elements in the sorted labels array with a value of 'pos' before the midpoint index
      pos_mask = np.logical_and(sorted_labels == 'pos', np.arange(len(sorted_data)) < midpoint_index)
      # Modify the value of the elements to be equal to the midpoint value plus 0.1
      sorted_data[pos_mask] = midpoint + 0.1
      # Reorder the data array to the original order
      reordered_data = sorted_data[np.argsort(sort_indices)]
      # Return the modified data
      return reordered_data

# =============================================================================
#     def modify_prediction_results(rawData, prediction_results, failedMarkersinData):
#         # Identify the index of the maximum value for each column in rawData
#         max_index = rawData.idxmax()
#         # Iterate through the specified columns of rawData
#         for col in failedMarkersinData:
#             # Get the index of the maximum value
#             max_row = max_index[col]
#             # Modify the corresponding index in prediction_results
#             prediction_results[col].at[max_row] = 'pos'
# =============================================================================

    def get_second_highest_values(df, failedMarkersinData):
        # get the second largest value for each column in the list
        second_highest_values = df[failedMarkersinData].max()
        # convert the series to a dictionary
        second_highest_values_dict = second_highest_values.to_dict()
        return second_highest_values_dict


    # sigmoid scaling to convert the data between 0-1 based on the midpoint
    def sigmoid(x, midpoint):
        return 1 / (1 + np.exp(-(x - midpoint)))

    # rescale based on min-max neg -> 0-4.9 and pos -> 0.5-1
    def scale_data(data, midpoint):
        below_midpoint = data[data <= midpoint]
        above_midpoint = data[data > midpoint]
        indices_below = np.where(data <= midpoint)[0]
        indices_above = np.where(data > midpoint)[0]

        # Scale the group below the midpoint
        min_below = below_midpoint.min()
        max_below = below_midpoint.max()
        range_below = max_below - min_below
        below_midpoint = (below_midpoint - min_below) / range_below

        # Scale the group above the midpoint
        if len(above_midpoint) > 0:
            min_above = above_midpoint.min()
            max_above = above_midpoint.max()
            range_above = max_above - min_above
            above_midpoint = (above_midpoint - min_above) / range_above
        else:
            above_midpoint = []

        # Re-assemble the data in the original order by using the indices of the values in each group
        result = np.empty(len(data))
        result[indices_below] = below_midpoint * 0.499999999
        if len(above_midpoint) > 0:
            result[indices_above] = above_midpoint * 0.50 + 0.50
        return result

    # classifies data based on a given midpoint
    def classify_data(data, sorted_means):
        data = np.array(data)
        low = sorted_means[0]
        high = sorted_means[1]
        return np.where(data < low, 'neg', np.where(data > high, 'pos', 'unknown'))



    ###########################################################################
    # step-1 : Identify markers that have failed in this dataset
    ###########################################################################
    # 0ld thresholding method
    #failed_markers = get_columns_with_low_values (df=adata.uns[csScore],minAbundance=minAbundance)

    # New GMM method
    failed_markers = simpleGMM_failedMarkers (df=adata.uns[csScore], 
                                              n_components=2, 
                                              minAbundance=minAbundance, 
                                              random_state=random_state)

    # to store in adata
    failed_markers_dict = {adata.obs[imageid].unique()[0] : failed_markers}

    if verbose is True:
        print('Failed Markers are: ' + ", ".join(str(x) for x in failed_markers))

    ###########################################################################
    # step-2 : Prepare DATA
    ###########################################################################

    rawData = pd.DataFrame(adata.raw.X, columns= adata.var.index, index = adata.obs.index)
    rawprocessed = pre_process (rawData, log=log)
    # drop user defined markers; note if a marker is dropped it will not be part of the
    # final prediction too. Markers that failed although removed from prediction will
    # still be included in the final predicted output as all negative.
    if dropMarkers is not None:
        if isinstance(dropMarkers, str):
            dropMarkers = [dropMarkers]
        pre_processed_data = rawprocessed.drop(columns=dropMarkers)
    else:
        pre_processed_data = rawprocessed.copy()

    # also drop failed markers
    failedMarkersinData = list(set(pre_processed_data.columns).intersection(failed_markers))

    # final dataset that will be used for prediction
    pre_processed_data = pre_processed_data.drop(columns=failedMarkersinData)

    # isolate the unet probabilities
    probQuant_data = adata.uns[csScore]

    # list of markers to process: (combined should match data)
    expression_unet_common = list(set(pre_processed_data.columns).intersection(set(probQuant_data.columns)))
    only_expression = list(set(pre_processed_data.columns).difference(set(probQuant_data.columns)))


    ###########################################################################
    # step-4 : Identify a subset of true positive and negative cells
    ###########################################################################

    # marker = 'CD4'
    def bonafide_cells (marker,
                        expression_unet_common, only_expression,
                        pre_processed_data, probQuant_data, random_state,
                        percentiles):


        if marker in expression_unet_common:
            if verbose is True:
                print("NN marker: " + str(marker))
            # run GMM on probQuant_data
            X = probQuant_data[marker].values.reshape(-1,1)
            # Fit the GMM model to the data
            labels, sorted_means = simpleGMM (data=X, n_components=2, means_init=None, random_state=random_state)

            # Identify cells that are above a certain threshold in the probability maps
            if stringentThreshold is True:
                labels = classify_data (data=probQuant_data[marker], sorted_means=sorted_means)

            # find the mean of the pos and neg cells in expression data given the labels
            values = pre_processed_data [marker].values
            Pmeans = array_mean (labels, values)
            # Format mean to pass into next GMM
            Pmean = np.array([[ Pmeans.get('neg')], [Pmeans.get('pos')]])

            # Now run GMM on the expression data
            Y = pre_processed_data[marker].values.reshape(-1,1)
            labelsE, sorted_meansE = simpleGMM (data=Y, n_components=2, means_init=Pmean, random_state=random_state)

            # Match the labels and index names to identify which cells are pos and neg
            expCells = array_match (labels=labels, names=pre_processed_data.index)
            probCells = array_match (labels=labelsE, names=pre_processed_data.index)
            # split it
            expCellsPos = expCells.get('pos', []) ; expCellsNeg = expCells.get('neg', [])
            probCellsPos = probCells.get('pos', []) ; probCellsNeg = probCells.get('neg', [])
            # find common elements
            pos = list(set(expCellsPos).intersection(set(probCellsPos)))
            neg = list(set(expCellsNeg).intersection(set(probCellsNeg)))

            # print no of cells
            if verbose is True:
                print("POS cells: {} and NEG cells: {}.".format(len(pos), len(neg)))

            # check if the length is less than 20 cells and if so add the marker to only_expression
            if len(pos) < 20 or len(neg) < 20: ## CHECK!
                only_expression.append(marker)
                if verbose is True:
                    print ("As the number of POS/NEG cells is low for " + str(marker) + ", GMM will fitted using only expression values.")


        if marker in only_expression:
            if verbose is True:
                print("Expression marker: " + str(marker))
            # Run GMM only on the expression data
            Z = pre_processed_data[marker].values.reshape(-1,1)
            # if user provides manual percentile, use it to intialize the GMM
            if percentiles is not None:
                percentiles.sort()
                F = pre_processed_data[marker].values
                # mean of cells within defined threshold
                lowerPercent = meanPercentile (values=F, lowPercentile=percentiles[0], highPercentile=percentiles[1])
                higherPercent = meanPercentile (values=F, lowPercentile=percentiles[2], highPercentile=percentiles[3])
                # Format mean to pass into next GMM
                Pmean = np.array([[lowerPercent], [higherPercent]])
                labelsOE, sorted_meansOE = simpleGMM (data=Z, n_components=2, means_init=Pmean, random_state=random_state)
            else:
                labelsOE, sorted_meansOE = simpleGMM (data=Z, n_components=2, means_init=None, random_state=random_state)
            # match labels with indexname
            OEcells = array_match (labels=labelsOE, names=pre_processed_data.index)
            # split it
            pos = OEcells.get('pos', []) ; neg = OEcells.get('neg', [])

            # randomly subset 70% of the data to return
            random.seed(random_state); pos = random.sample(pos, k=int(len(pos) * 0.7))
            random.seed(random_state); neg = random.sample(neg, k=int(len(neg) * 0.7))

            # print no of cells
            if verbose is True:
                print("Defined POS cells is {} and NEG cells is {}.".format(len(pos), len(neg)))

            # What happens of POS/NEG is less than 20
            # check if the length is less than 20 cells and if so add the marker to only_expression
            if len(pos) < 20 or len(neg) < 20:  ## CHECK!
                if percentiles is None:
                    percentiles = [1,20,80,99]
                neg = list(indexPercentile (pre_processed_data, marker, lowPercentile=percentiles[0], highPercentile=percentiles[1]))
                pos = list(indexPercentile (pre_processed_data, marker, lowPercentile=percentiles[2], highPercentile=percentiles[3]))
                if verbose is True:
                    print ("As the number of POS/NEG cells is low for " + str(marker) + ", cells falling within the given percentile " + str(percentiles) + ' was used.')

        # return the output
        return marker, pos, neg

    # Run the function on all markers
    if verbose is True:
        print("Intial GMM Fitting")
    r_bonafide_cells = lambda x: bonafide_cells (marker=x,
                                                expression_unet_common=expression_unet_common,
                                                only_expression=only_expression,
                                                pre_processed_data=pre_processed_data,
                                                probQuant_data=probQuant_data,
                                                random_state=random_state,
                                                percentiles=percentiles)
    bonafide_cells_result = list(map(r_bonafide_cells,  pre_processed_data.columns)) # Apply function



    ###########################################################################
    # step-5 : Generate training data for the Gradient Boost Classifier
    ###########################################################################

    # bonafide_cells_result = bonafide_cells_result[8]
    def trainingData (bonafide_cells_result, pre_processed_data, RobustScale):
        # uravel the data
        marker = bonafide_cells_result[0]
        pos = bonafide_cells_result[1]
        neg = bonafide_cells_result[2]
        PD = pre_processed_data.copy()

        if verbose is True:
            print('Processing: ' + str(marker))

        # class balance the number of pos and neg cells based on the lowest denominator
        if len(neg) < len(pos):
            pos = random.sample(pos, len(neg))
        else:
            neg = random.sample(neg, len(pos))

        # processed data with pos and neg info


        #PD['label'] = ['pos' if index in pos else 'neg' if index in neg else 'other' for index in PD.index]
        PD['label'] = np.where(PD.index.isin(pos), 'pos', np.where(PD.index.isin(neg), 'neg', 'other'))
        combined_data = PD.copy()

        # scale data if requested
        if RobustScale is True:
            combined_data_labels = combined_data[['label']]
            combined_data = combined_data.drop('label', axis=1)
            combined_data = apply_transformation(combined_data)
            combined_data = pd.concat ([combined_data, combined_data_labels], axis=1)

        # return final output
        return marker, combined_data

    # Run the function
    if verbose is True:
        print("Building the Training Data")
    r_trainingData = lambda x: trainingData (bonafide_cells_result=x,
                                                 pre_processed_data=pre_processed_data,
                                                 RobustScale=RobustScale)
    trainingData_result = list(map(r_trainingData, bonafide_cells_result)) # Apply function


    ###########################################################################
    # step-6 : Train and Predict on all cells
    ###########################################################################

    # trainingData_result = trainingData_result[2]
    def csClassifier (trainingData_result,random_state):

        #unravel data
        marker = trainingData_result[0]
        combined_data = trainingData_result[1]

        # prepare the data for predicition
        index_names_to_drop = [index for index in combined_data.index if 'npu' in index or 'nnu' in index]
        predictionData = combined_data.drop(index=index_names_to_drop, inplace=False)
        predictionData = predictionData.drop('label', axis=1)

        if verbose is True:
            print('classifying: ' + str(marker))

        # shuffle the data
        combined_data = combined_data.sample(frac=1) # shuffle it

        # prepare the training data and training labels
        to_train = combined_data.loc[combined_data['label'].isin(['pos', 'neg'])]
        training_data = to_train.drop('label', axis=1)
        training_labels = to_train[['label']]
        trainD = training_data.values
        trainL = training_labels.values
        trainL = [item for sublist in trainL for item in sublist]


        #start = time.time()

        # Function for the classifier
        #mlp = MLPClassifier(**kwargs) # CHECK
        #model = GradientBoostingClassifier()

        model = HistGradientBoostingClassifier(random_state=random_state, **kwargs)
        #model = HistGradientBoostingClassifier(random_state=random_state)
        model.fit(trainD, trainL)
        # predict
        pred = model.predict(predictionData.values)
        prob = model.predict_proba(predictionData.values)
        prob = [item[0] for item in prob]

        #end = time.time()
        #print(end - start)

        # find the mid point based on the predictions (used for rescaling data later)
        midpoint = find_midpoint(data=predictionData[marker].values, labels=pred)

        # return
        return marker, pred, prob, midpoint

    # Run the function
    if verbose is True:
        print("Fitting model for classification:")
    r_csClassifier = lambda x: csClassifier (trainingData_result=x,random_state=random_state)
    csClassifier_result = list(map(r_csClassifier, trainingData_result))

    ###########################################################################
    # step-7 : Consolidate the results into a dataframe
    ###########################################################################

    # consolidate results
    markerOrder = []
    for i in range(len(csClassifier_result)):
        markerOrder.append(csClassifier_result[i][0])

    prediction_results = []
    for i in range(len(csClassifier_result)):
        prediction_results.append(csClassifier_result[i][1])
    prediction_results = pd.DataFrame(prediction_results, index=markerOrder, columns=pre_processed_data.index).T

    probability_results = []
    for i in range(len(csClassifier_result)):
        probability_results.append(csClassifier_result[i][2])
    probability_results = pd.DataFrame(probability_results, index=markerOrder, columns=pre_processed_data.index).T

    midpoints_dict = {}
    for i in range(len(csClassifier_result)):
        midpoints_dict[markerOrder[i]] = csClassifier_result[i][3]

    ###########################################################################
    # step-8 : Final cleaning of predicted results with UNET results
    ###########################################################################

    # bonafide_cells_result_copy = bonafide_cells_result.copy()
    # bonafide_cells_result = bonafide_cells_result[8]

    def anomalyDetector (pre_processed_data, bonafide_cells_result, prediction_results):
        # unravel data
        marker = bonafide_cells_result[0]
        pos = bonafide_cells_result[1]
        neg = bonafide_cells_result[2]

        if verbose is True:
            print("Processing: " + str(marker))
        # prepare data
        X = pre_processed_data.drop(marker, axis=1)
        # scale data
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)

        # model data
        #model = LocalOutlierFactor(n_neighbors=20)
        #model.fit(X_scaled)
        #outlier_scores = model.negative_outlier_factor_
        #outliers = pre_processed_data[outlier_scores < -1].index

        # Initialize LocalOutlierFactor with parallel processing
        model = LocalOutlierFactor(n_neighbors=20, n_jobs=-1)

        # Define batch size and prepare for batch processing
        batch_size = 50000  # Adjust this based on your system's memory capacity
        n_batches = int(np.ceil(X_scaled.shape[0] / batch_size))

        outlier_scores = np.array([])

        # Process in batches
        for i in range(n_batches):
            start_index = i * batch_size
            end_index = start_index + batch_size
            batch = X_scaled[start_index:end_index]

            # Fit the model on the batch
            model.fit(batch)

            # Append the batch's outlier scores
            batch_scores = model.negative_outlier_factor_
            outlier_scores = np.concatenate((outlier_scores, batch_scores))

        # Identifying outliers
        threshold = -1 
        outliers = pre_processed_data[outlier_scores < threshold].index


        # common elements betwenn outliers and true neg
        posttoneg = list(set(outliers).intersection(set(neg)))
        # similarly is there any cells in negative that needs to be relocated to positive?
        negtopos = list(set(pos).intersection(set(prediction_results[prediction_results[marker]=='neg'].index)))

        # mutate the prediction results
        prediction_results.loc[negtopos, marker] = 'pos'
        prediction_results.loc[posttoneg, marker] = 'neg'

        # results
        results = prediction_results[[marker]]
        return results

    # Run the function
    if verbose is True:
        print("Running Anomaly Detection")
    r_anomalyDetector = lambda x: anomalyDetector (bonafide_cells_result = x,
                                                   pre_processed_data = pre_processed_data,
                                                   prediction_results = prediction_results)

    # as the Anomaly Detection uses the rest of the data it cannot be run on 1 marker
    if len(bonafide_cells_result) > 1:
        anomalyDetector_result = list(map(r_anomalyDetector, bonafide_cells_result))
        # final prediction
        prediction_results = pd.concat(anomalyDetector_result, axis=1)


    ###########################################################################
    # step-9 : Reorganizing all predictions into a final dataframe
    ###########################################################################

    # re introduce failed markers
    if len(failedMarkersinData) > 0 :
        for name in failedMarkersinData:
            prediction_results[name] = 'neg'

        # modify the highest value element to be pos
        #modify_prediction_results(rawprocessed, prediction_results, failedMarkersinData)

        # identify midpoints for the failed markers (second largest element)
        max_values_dict = get_second_highest_values (rawprocessed, failedMarkersinData)

        # update midpoints_dict
        midpoints_dict.update(max_values_dict)

        # add the column to pre_processed data for rescaling
        columns_to_concat = rawprocessed[failedMarkersinData]
        pre_processed_data = pd.concat([pre_processed_data, columns_to_concat], axis=1)


    ###########################################################################
    # step-10 : Rescale data
    ###########################################################################

    # marker = 'ECAD'
    def rescaleData (marker, pre_processed_data, prediction_results, midpoints_dict):
        if verbose is True:
            print("Processing: " + str(marker))
        # unravel data
        data = pre_processed_data[marker].values
        labels = prediction_results[marker].values
        midpoint = midpoints_dict.get(marker)

        # reformat data such that all negs and pos are sorted based on the midpoint
        rescaled = modify_negatives_vectorized(data,
                                               labels,
                                               midpoint)

        # sigmoid scaling to convert the data between 0-1 based on the midpoint
        if rescaleMethod == 'sigmoid':
            rescaled_data = sigmoid (rescaled, midpoint=midpoint)

        if rescaleMethod == 'minmax':
            rescaled_data = scale_data(rescaled, midpoint=midpoint)

        # return
        return rescaled_data

    # Run the function
    if verbose is True:
        print("Rescaling the raw data")
    r_rescaleData = lambda x: rescaleData (marker=x,
                                           pre_processed_data=pre_processed_data,
                                           prediction_results=prediction_results,
                                           midpoints_dict=midpoints_dict)
    rescaleData_result = list(map(r_rescaleData, pre_processed_data.columns))
    rescaledData = pd.DataFrame(rescaleData_result, index=pre_processed_data.columns, columns=pre_processed_data.index).T



    ###########################################################################
    # step-8 : create a new adata object with the results
    ###########################################################################


    final_markers = pre_processed_data.columns
    intial_markers = rawData.columns
    ordered_final_markers = [marker for marker in intial_markers if marker in final_markers]
    # final raw data
    rd = rawData[ordered_final_markers].reindex(adata.obs.index)
    # final scaled data
    rescaledData = rescaledData[ordered_final_markers].reindex(adata.obs.index)
    # final pre-processed data
    pre_processed_data = pre_processed_data[ordered_final_markers].reindex(adata.obs.index)


    # reindex prediction results
    prediction_results = prediction_results.reindex(adata.obs.index)
    #probability_results = probability_results.reindex(adata.obs.index)

    # create AnnData object
    bdata = ad.AnnData(rd, dtype=np.float64)
    bdata.obs = adata.obs
    bdata.raw = bdata
    bdata.X = rescaledData
    # add the pre-processed data as a layer
    bdata.layers["preProcessed"] = pre_processed_data
    bdata.uns = adata.uns
    bdata.uns['failedMarkers'] = failed_markers_dict
    bdata.uns['predictedGates'] = midpoints_dict

    # save the prediction results in anndata object
    bdata.uns[str(label)] = prediction_results
    #bdata.uns[str(label)] = probability_results

    # Save data if requested
    if projectDir is not None:
        finalPath = pathlib.Path(projectDir + '/CSPOT/cspotOutput')
        if not os.path.exists(finalPath):
            os.makedirs(finalPath)
        if len(csObjectPath) > 1:
            imid = 'cspotOutput'
        else:
            imid = csObjectPath[0].stem
        bdata.write(finalPath / f'{imid}.h5ad')

    # Finish Job
    if verbose is True:
        if projectDir is not None:
            print('CSPOT ran successfully, head over to "' + str(projectDir) + '/CSPOT/cspotOutput" to view results')

    return bdata