Skip to content

scatterPlot

Short Description

The scatterPlot function can be used to create scatter plots of single-cell spatial data. This function can be used to visualize the spatial distribution of positive cells for a given marker, providing a quick and intuitive way to view the final predictions.

Function

scatterPlot(csObject, markers=None, cspotOutput='cspotOutput', x_coordinate='X_centroid', y_coordinate='Y_centroid', poscellsColor='#78290f', negcellsColor='#e5e5e5', s=None, ncols=5, alpha=1, dpi=200, figsize=(5, 5), invert_yaxis=True, outputDir=None, outputFileName='cspotPlot.png', **kwargs)

Parameters:

Name Type Description Default
csObject anndata

Pass the csObject loaded into memory or a path to the csObject file (.h5ad).

required
markers str or list of str

The name(s) of the markers to plot. If not provided, all markers will be plotted.

None
cspotOutput str

The label underwhich the CSPOT output is stored within the object.

'cspotOutput'
x_coordinate str

The column name in single-cell spatial table that records the X coordinates for each cell.

'X_centroid'
y_coordinate str

The column name in single-cell spatial table that records the Y coordinates for each cell.

'Y_centroid'
poscellsColor str

The color of positive cells.

'#78290f'
negcellsColor str

The color of negative cells.

'#e5e5e5'
s float

The size of the markers.

None
ncols int

The number of columns in the final plot when multiple makers are plotted.

5
alpha float

The alpha value of the points (controls opacity).

1
dpi int

The DPI of the figure.

200
figsize tuple

The size of the figure.

(5, 5)
invert_yaxis bool

Invert the Y-axis of the plot.

True
outputDir str

The directory to save the output plot.

None
outputFileName str

The name of the output file. Use desired file format as suffix (e.g. .png pr .pdf)

'cspotPlot.png'
**kwargs keyword parameters

Additional arguments to pass to the matplotlib.scatter function.

{}

Returns:

Name Type Description
Plot image

If outputDir is provided the plot will saved within the provided outputDir.

Example
# Prohect directory
projectDir = '/Users/aj/Documents/cspotExampleData'

# path to the final output
csObject = '/Users/aj/Desktop/cspotExampleData/CSPOT/cspotOutput/exampleImage_cspotPredict.ome.h5ad'

# Plot image to console
cs.scatterPlot(csObject,
    markers=['ECAD', 'CD8A', 'CD45'],
    poscellsColor='#78290f',
    negcellsColor='#e5e5e5',
    s=3,
    ncols=3,
    dpi=90,
    figsize=(4, 4),
    outputDir=None,
    outputFileName='cspotplot.png')

# Same function if the user wants to run it via Command Line Interface
python scatterPlot.py --csObject /Users/aj/Desktop/cspotExampleData/CSPOT/cspotOutput/exampleImage_cspotPredict.ome.h5ad                             --markers ECAD CD8A                             --outputDir /Users/aj/Desktop/cspotExampleData/CSPOT
Source code in cspot/scatterPlot.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def scatterPlot (csObject, 
                 markers=None, 
                 cspotOutput='cspotOutput',
                 x_coordinate='X_centroid',
                 y_coordinate='Y_centroid',
                 poscellsColor='#78290f',
                 negcellsColor='#e5e5e5',
                 s=None,
                 ncols=5,
                 alpha=1,
                 dpi=200,
                 figsize=(5, 5),
                 invert_yaxis=True,
                 outputDir=None,
                 outputFileName='cspotPlot.png',
                 **kwargs):
    """
Parameters:
    csObject (anndata):
        Pass the `csObject` loaded into memory or a path to the `csObject` 
        file (.h5ad).

    markers (str or list of str, optional): 
        The name(s) of the markers to plot. If not provided, all markers will be plotted.

    cspotOutput (str, optional): 
        The label underwhich the CSPOT output is stored within the object.

    x_coordinate (str, optional):
        The column name in `single-cell spatial table` that records the
        X coordinates for each cell. 

    y_coordinate (str, optional):
        The column name in `single-cell spatial table` that records the
        Y coordinates for each cell.

    poscellsColor (str, optional): 
        The color of positive cells.

    negcellsColor (str, optional): 
        The color of negative cells. 

    s (float, optional): 
        The size of the markers.

    ncols (int, optional): 
        The number of columns in the final plot when multiple makers are plotted. 

    alpha (float, optional): 
        The alpha value of the points (controls opacity).

    dpi (int, optional): 
        The DPI of the figure.

    figsize (tuple, optional): 
        The size of the figure.

    invert_yaxis (bool, optional):  
        Invert the Y-axis of the plot. 

    outputDir (str, optional): 
        The directory to save the output plot. 

    outputFileName (str, optional): 
        The name of the output file. Use desired file format as 
        suffix (e.g. `.png` pr `.pdf`)

    **kwargs (keyword parameters):
        Additional arguments to pass to the `matplotlib.scatter` function.


Returns:
    Plot (image):
        If `outputDir` is provided the plot will saved within the
        provided outputDir.

Example:
        ```python

        # Prohect directory
        projectDir = '/Users/aj/Documents/cspotExampleData'

        # path to the final output
        csObject = '/Users/aj/Desktop/cspotExampleData/CSPOT/cspotOutput/exampleImage_cspotPredict.ome.h5ad'

        # Plot image to console
        cs.scatterPlot(csObject,
            markers=['ECAD', 'CD8A', 'CD45'],
            poscellsColor='#78290f',
            negcellsColor='#e5e5e5',
            s=3,
            ncols=3,
            dpi=90,
            figsize=(4, 4),
            outputDir=None,
            outputFileName='cspotplot.png')

        # Same function if the user wants to run it via Command Line Interface
        python scatterPlot.py --csObject /Users/aj/Desktop/cspotExampleData/CSPOT/cspotOutput/exampleImage_cspotPredict.ome.h5ad \
                            --markers ECAD CD8A \
                            --outputDir /Users/aj/Desktop/cspotExampleData/CSPOT
        ```

    """

    # Load the andata object
    if isinstance(csObject, str):
        adata = ad.read(csObject)
    else:
        adata = csObject.copy()

    # break the function if cspotOutput is not detectable
    def check_key_exists(dictionary, key):
        try:
            # Check if the key exists in the dictionary
            value = dictionary[key]
        except KeyError:
            # Return an error if the key does not exist
            return "Error: " + str(cspotOutput) + " does not exist, please check!"
    # Test
    check_key_exists(dictionary=adata.uns, key=cspotOutput)


    # convert marter to list
    if markers is None:
        markers = list(adata.uns[cspotOutput].columns)
    if isinstance (markers, str):
        markers = [markers]

    # identify the x and y coordinates
    x = adata.obs[x_coordinate]
    y = adata.obs[y_coordinate]

    # subset the cspotOutput with the requested markers
    subset = adata.uns[cspotOutput][markers]
    # get the list of columns to plot
    cols_to_plot = subset.columns

    # identify the number of columns to plot
    ncols = min(ncols, len(cols_to_plot))

    # calculate the number of rows needed for the subplot
    nrows = (len(cols_to_plot) - 1) // ncols + 1

    # resolve figsize
    figsize = (figsize[0]*ncols, figsize[1]*nrows)

    # Estimate point size
    if s is None:
        s = (100000 / adata.shape[0]) / len(cols_to_plot)

    # FIIGURE
    fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize, dpi=dpi)
    for i, col in enumerate(cols_to_plot):
        # get the classes for the current column
        classes = list(subset[col])

        # get the current subplot axes
        if nrows==1 and ncols==1:
            ax = axs
        elif nrows==1 or ncols==1:
            ax = axs[i]
        else:
            ax = axs[i // ncols, i % ncols]

        # invert y-axis
        if invert_yaxis is True:
            ax.invert_yaxis()

        # set the title of the subplot to the current column name
        ax.set_title(col)

        # plot the 'neg' points with a small size
        neg_x = [x[j] for j in range(len(classes)) if classes[j] == 'neg']
        neg_y = [y[j] for j in range(len(classes)) if classes[j] == 'neg']
        #ax.scatter(x=neg_x, y=neg_y, c=negcellsColor, s=s, alpha=alpha)
        ax.scatter(x=neg_x, y=neg_y, c=negcellsColor, s=s, linewidth=0, alpha=alpha, **kwargs)

        # plot the 'pos' points on top of the 'neg' points with a larger size
        pos_x = [x[j] for j in range(len(classes)) if classes[j] == 'pos']
        pos_y = [y[j] for j in range(len(classes)) if classes[j] == 'pos']
        #ax.scatter(x=pos_x, y=pos_y, c=poscellsColor, s=s, alpha=alpha)
        ax.scatter(x=pos_x, y=pos_y, c=poscellsColor, s=s, linewidth=0, alpha=alpha, **kwargs)

        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_xticks([])
        ax.set_yticks([])

    # remove any unused subplots
    for i in range(len(cols_to_plot), nrows * ncols):
        fig.delaxes(axs[i // ncols, i % ncols])

    plt.tight_layout()

    # save figure
    if outputDir is not None:
        plt.savefig(pathlib.Path(outputDir) / outputFileName)